当前位置: 首页 » 资讯 » 行业资讯 » 正文

多光子显微镜成像技术之二十二 多色三光子荧光成像技术

分享到:
放大字体  缩小字体    发布日期:2022-10-17  来源:WKW |  作者:小球球  浏览次数:333
核心提示:
作为深层组织和活细胞成像的强大工具,多光子显微镜可以简单分为双光子显微镜(2PM)和三光子显微镜(3PM)两种。相对于2PM,3PM有两大优势:一是使用更长波段的激发光源,让激光在生物组织中有更长的衰减距离;二是通过更高阶的非线性激发,减少背景信号的强度。基于这些优势,3PM大幅提高了多光子显微成像的穿透深度和图像信噪比。然而,构造能同时激发多种荧光团的多色3PM远比2PM更有挑战性。一般来说,能同时观察绿色和红色荧光团的双色3PM需要两种不同的激发波长,分别为1300 nm和1700 nm。使用双波长光源不仅增加了总激发功率和损伤组织的风险,也增加了光学系统的复杂性。因此,发展单一激发波长的多色3PM在生命科学研究中具有重要的实际意义[1]。

科研界普遍认为,绿色和红色荧光团的吸收峰相去甚远,但荧光团的三光子吸收谱与单光子吸收谱并不完全一致。三光子截面的峰值相对其单光子吸收峰会蓝移数百纳米,这为单一波长同时激发绿色和红色荧光团提供了基础。

图1 溶液中Texas Red、SR 101、Alexa Fluor 546、DsRed、tdTomato、mCherry Qdot 605的单光子吸收谱、双光子及三光子吸收截面

图1表示一些常见荧光染剂的单光子吸收谱、双光子和三光子截面。以红色荧光团Texas Red为例,其单光子吸收峰位于590 nm,双光子截面与单光子吸收谱类似,而三光子截面峰位于420 nm,对应跃迁到更高的能级。这说明~1300 nm的脉冲也能对红色荧光团进行有效的三光子激发。如图2所示,当激发波长低于1260 nm时,荧光团仅激发双光子信号。随着激发波长逐渐红移,激发信号会混合双光子和三光子的荧光。当波长大于1340 nm,激发信号才以三光子荧光为主。

图2 Texas Red荧光信号强度与入射激光强度取对数后的斜率与激发波长的关系

图3是不同激发波长对Texas Red标记小鼠大脑血管的多光子图像。如图所示,随着波长从1220 nm到1340 nm,三光子荧光信号的比例逐渐上升,图像的信噪比也逐渐上升。1650 nm激发的三光子荧光图像相较于1340 nm信噪比有略微的下降,原因是1650 nm的三光子截面要低于1340 nm。

图3 Texas Red标记小鼠大脑血管的多光子图像

图4 在1340 nm激发下的多色三光子荧光图像。

图4 显示了单一1340 nm波段激发的多色三光子图像。其中GCaMP6标记小鼠大脑中的神经元、Texas Red标记血管,三倍频信号则主要观察红细胞和髓磷脂。由于所有通道均为三光子激发的过程,图像信噪比优越。

总而言之,基于1340 nm的新型三光子激发方案,不仅有出色的多色成像能力,还对常见的红色荧光分子有超过10倍的信号增强。这将为三光子显微镜在生命科学应用的拓展提供新的机遇。

参考文献

[1] Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Science Advances 7, eabf3531 (2021).


       原文标题 : 多光子显微镜成像技术之二十二 多色三光子荧光成像技术

 
 
打赏
[ 资讯搜索 ]  [ 加入收藏 ]  [ 告诉好友 ]  [ 打印本文 ]  [ 违规举报 ]  [ 关闭窗口 ]

免责声明:
本网站部分内容来源于合作媒体、企业机构、网友提供和互联网的公开资料等,仅供参考。本网站对站内所有资讯的内容、观点保持中立,不对内容的准确性、可靠性或完整性提供任何保证,亦不承担任何法律责任。如果有侵权等问题,请及时联系网站客服,我们将在收到通知后第一时间删除相关内容。
 

多光子显微镜成像技术之二十二  多色三光子荧光成像技术二维码

扫扫二维码用手机关注本条新闻报道也可关注本站官方微信账号:"xxxxx",每日获得互联网最前沿资讯,热点产品深度分析!
 

 
0相关评论